

BEST PRACTICES FOR PERFORMANCE ENGINEERING TRAINING

MAY 18, 2020 I BERND MOHR

Mitglied der Helmholtz-Gemeinschaft

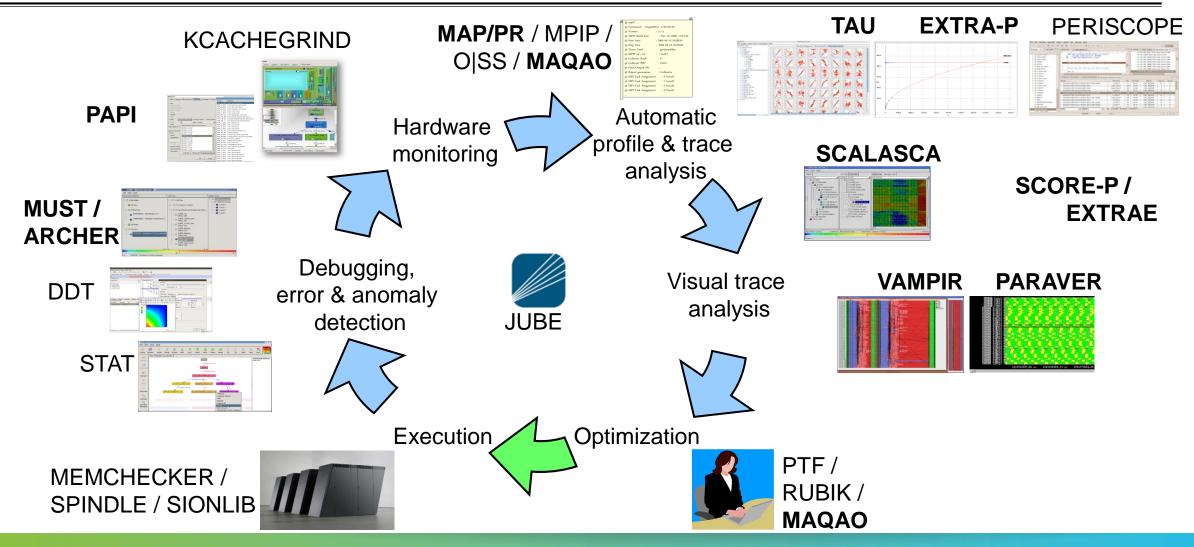
BACKGROUND: WHO AM I / WHO ARE WE?

- SoftWare Analysis and Tools (SWAT) Team
- Jülich Supercomputing Centre (JSC), Germany
- Tasks
 - Service: performance analysis of HPC applications of JSC users and POP customers
 - **Development**: Score-P, Scalasca, Cube tools
 - **Research**: parallel performance analysis methods and tools
 - Education and Training
 - 10 to 15 events per year for last 15 years
 - Half- and full-day tutorials at conferences like SC, ISC, ...
 - 1 to 3 day tool trainings at HPC centres and Universities
 - 3 to 5 day VI-HPS Tuning Workshops

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Virtual Institute – High Productivity Supercomputing

- **Goal**: Improve the quality and accelerate the development process of complex simulation codes running on highly-parallel computer systems
- Start-up funding (2006–2011)
 by Helmholtz Association of German Research Centres
- Activities
 - Development and integration of HPC programming tools
 - Correctness checking & performance analysis
 - Academic workshops
 - Training workshops


http://www.vi-hps.org

VIRTUAL INSTITUTE -- HIGH PRODUCTIVITY SUPERCOMPUTING

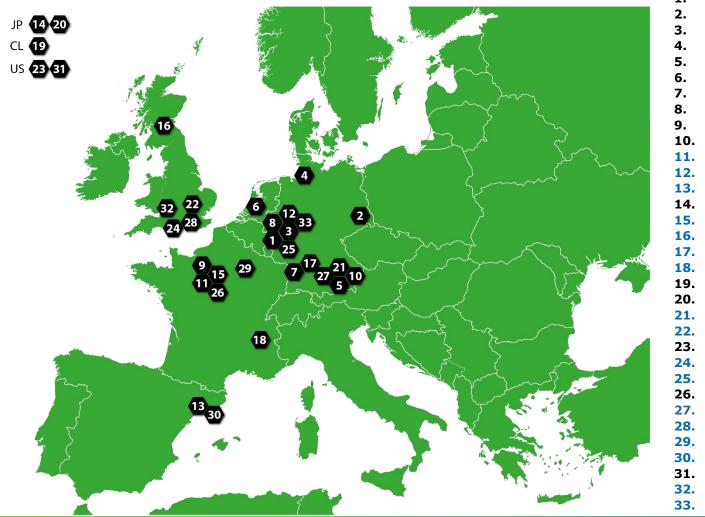
Technologies and their integration

VI-HPS training & Tuning Workshops

Goals

- Give an overview of the programming tools suite
- Explain the functionality of individual tools
- Teach how to use the tools effectively
- Offer hands-on experience and expert assistance using tools
- Receive feedback from users to guide future development

For best results, bring & analyze/tune your own code(s)!

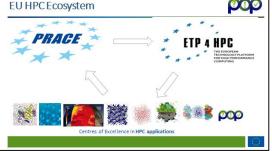

- VI-HPS Hands-on Tutorial series
 - SC'08-11/13-17/19, ICCS'09, Cluster'10, EuroMPI'12/14, XSEDE'13, ISC-HPC'15-19
- VI-HPS Tuning Workshop series
 - 2008 (x2), 2009 (x2), 2010 (x2), 2011 (x2), 2012 (x2), 2013 (x2), 2014(x4), 2015(x3)
 - 2016 (Kobe/Japan, Garching/Germany, Cambridge/UK, Livermore/USA)
 - 2017 (Southampton/UK, Aachen/Germany, Bruyères-le-Châtel/France)
 - 2018 (Garching/Germany, London/UK, Reims/France)
 - 2019 (Barcelona/Spain, Knoxville/USA, Bristol/UK, Jülich/Germany)

VIRTUAL/INSTITUTE - HIGH/PRODUCTIVITY SUPERCOMPUTING

VI-HPS Tuning Workshop series

1.	2008/03/05+3:	RWTH, Aachen, Germany
2.	2008/10/08+3:	ZIH, Dresden, Germany
3.	2009/02/16+5:	JSC, Jülich, Germany
4.	2009/09/09+3:	HLRN, Bremen, Germany
5.	2010/03/08+3:	TUM, Garching, Germany
6.	2010/05/26+3:	SARA, Amsterdam, Netherlands
7.	2011/03/28+3:	HLRS, Stuttgart, Germany
8.	2011/09/05+5:	GRS, Aachen, Germany
9.	2012/04/23+5:	UVSQ, St-Quentin, France
10.	2012/10/16+4:	LRZ, Garching, Germany
11.	2013/04/22+4:	MdS, Saclay, France
12.	2013/10/07+5:	JSC, Jülich, Germany
13.	2014/02/10+5:	BSC, Barcelona, Spain
14.	2014/03/25+3:	RIKEN AICS, Kobe, Japan
15.	2014/04/07+4:	MdS, Saclay, France
16.	2014/04/29+3:	EPCC, Edinburgh, Scotland
17.	2015/02/23+5:	HLRS, Stuttgart, Germany
18.	2015/05/18+5:	UGA, Grenoble, France
19.	2015/10/27+3:	NLHPC, Santiago, Chile
20.	2016/02/24+3:	RIKEN AICS, Kobe, Japan
21.	2016/04/18+5:	LRZ, Garching, Germany
22.	2016/07/06+3:	Uni. Cambridge, England
23.	2016/07/27+3:	LLNL, Livermore, California, USA
24.	2017/02/08+3:	Uni. Southampton, England
25.	2017/03/27+5:	RWTH, Aachen, Germany
26.	2017/10/16+5:	Lab. ECR, Ter@tec, France
27.	2018/04/23+5:	LRZ, Garching, Germany
28.	2018/06/21+3:	UCL, London, England
29.	2018/10/15+5:	ROMEO, Reims, France
30.	2019/01/21+5:	BSC, Barcelona, Spain
31.	2019/04/09+4:	UTK-ICL, Knoxville/TN, USA
32.	2019/04/24+3:	Uni. Bristol, England
33.	2019/06/24+5:	JSC, Jülich, Germany

LESSONS LEARNED FROM TRAINING


- Performance tools are not easy-to-use and intuitive
 - Relatively easy to collect and display performance data (typically shown in tutorials)
 - But hard to draw the right conclusions from them (typically not shown in tutorials)
 - So, users tend to use their own methods (like printf debugging)
- Performance tools rarely work out-of-the-box for user applications
 - Differences in HW + SW stack and build systems used for applications
- ⇒ Important to demonstrate usefulness of tool
 - ⇒ For the users application
 - ⇒ During the training

POP CoE (https://pop-coe.eu)

- A Centre of Excellence
 - On Performance Optimisation and Productivity
 - Promoting best practices in parallel programming
- Providing FREE Services
 - Precise understanding of application and system behaviour
 - Suggestion/support on how to refactor code in the most productive way
- Horizontal
 - Transversal across application areas, platforms, scales
- For (EU) academic AND industrial codes and users !

Partners

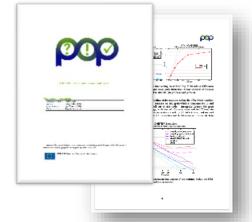
• Who?

- BSC, ES (coordinator)
- HLRS, DE
- IT4I, CZ
- JSC, DE
- NAG, UK
- RWTH Aachen, IT Center, DE
- TERATEC, FR
- UVSQ, FR

A team with

- Excellence in performance tools and tuning
- Excellence in programming models and practices
- Research and development background AND proven commitment in application to real academic and industrial use cases

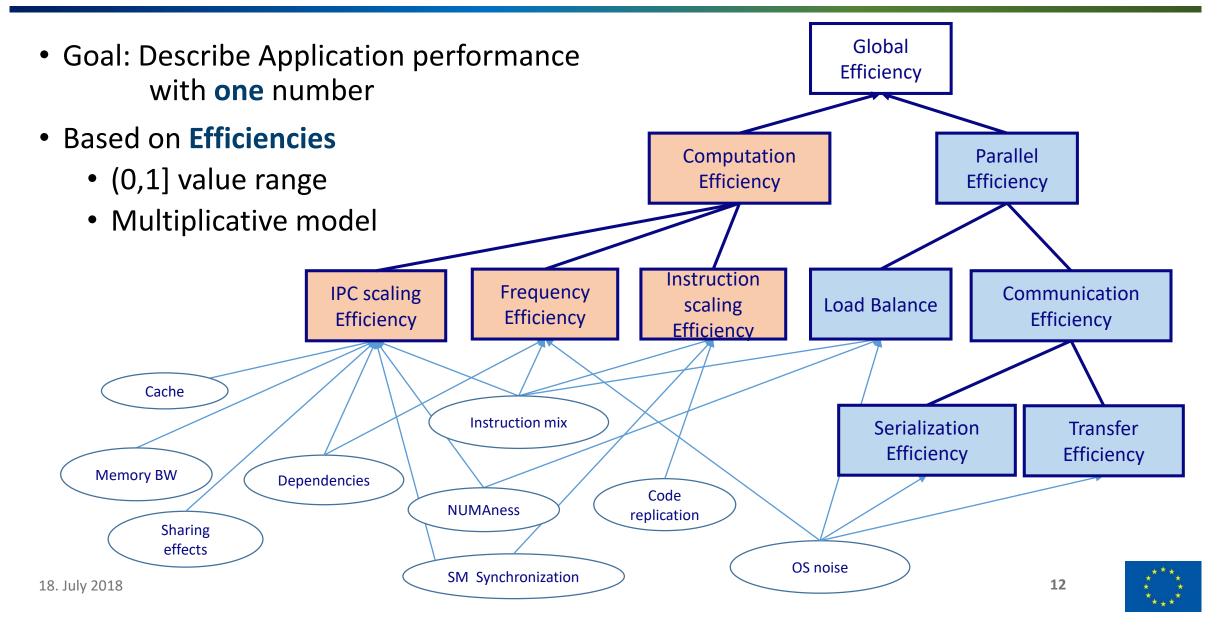
FREE Services provided by the CoE


Parallel Application Performance Assessment

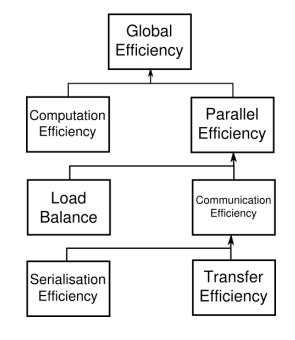
- Primary service
- Identifies performance issues of customer code (at customer site)
- If needed, identifies the root causes of the issues found and qualifies and quantifies approaches to address them (recommendations)
- Combines former Performance Audit (?) and Plan (!)
- Medium effort (1-3 months)

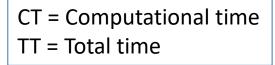
Proof-of-Concept (✓)

- Follow-up service
- Experiments and mock-up tests for customer codes
- Kernel extraction, parallelisation, mini-apps experiments to show effect of proposed optimisations
- Larger effort (3-6 months)


Note: Effort shared between our experts and customer!

Make Performance Assessment simpler ...





18. July 2018

Efficiencies

- The following metrics are used in a POP Performance Audit:
- Global Efficiency (GE): GE = PE * CompE
 - Parallel Efficiency (PE): PE = LB * CommE
 - Load Balance Efficiency (LB): LB = avg(CT)/max(CT)
 - Communication Efficiency (CommE): CommE = SerE * TE
 - Serialization Efficiency (SerE): SerE = max (CT / TT on ideal network)
 - Transfer Efficiency (TE): TE = TT on ideal network / TT
 - (Serial) Computation Efficiency (CompE)
 - Computed out of IPC Scaling and Instruction Scaling
 - For strong scaling: ideal scaling -> efficiency of 1.0
- Details see https://sharepoint.ecampus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/Metrics.pdf •

Performance Analyst Training

- Learn how to efficiently use the tools used in the project
- Learn about the POP metrics and methodolgy
- Currently project-internal only
 - Get new project members started
 - Educate existing members with advanced topics
- Potentially in the future
 - Provide performance analyst training for others
 - "Certified POP Performance Analyst"

QUESTIONS?

b.mohr@fz-juelich.de

