

Anja Gerbes

Potential synergies between offering NHR trainings and the HPCCF competence standard

Dresden, 14.12.2021

Outline

Introduction

NHR Training-Portfolio 2021 @ ZIH

HPC Certfication Forum (HPC-CF) Skill Tree

Comparison: NHR Course Website vs. HPC-CF Skill Tree Entry

NHR Certification of Participation

Summary

Introduction

TU Dresden

- is a member of the National High Performance Computing (NHR) since January 2021. (https://tu-dresden.de/zih/hochleistungsrechnen/nhr-center)
- defined several competences in their NHR application.

started their NHR Training Sessions in September 2021.
 (https://tu-dresden.de/zih/hochleistungsrechnen/nhr-training)

NHR Training-Portfolio 2021 @ ZIH

NHR-Tutorial → Course with Hands-On

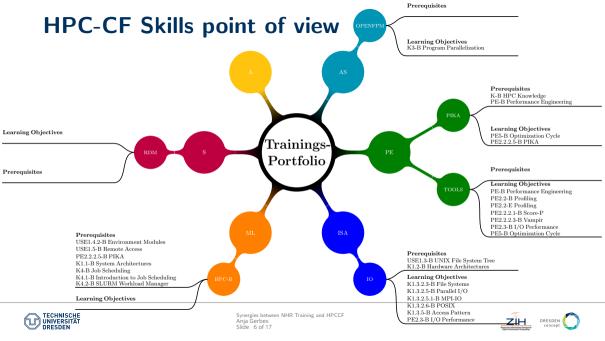
NHR-Lecture → Course without Hands-On

NHR-Workshop → Workshop

NHR Training-Portfolio 2021 @ ZIH

Speaker:

- Define Course Type
- Define Target Group
- Define Course Title
- Write Summary
- Define Agenda
- Create Reference Guide (optional)
- Define Questions for Survey
- Define Prerequisites → → → →
- Define Learning Objectives $\longrightarrow \neg$ \downarrow mapping \downarrow \downarrow
 - Search/Define HPC-CF Skill Tree Entry
 - Background
 - Aim
 - Outcomes


NHR Coordinator:

- Define Questions for Survey
- · Create Course Website Link
- Create Registration Link
- Create Survey Link
- · Create Certficate of Participation

HPC-CF Skill Tree

Keyword HPC-CF Competencies

ADM AdministrationBDA Data Analytics

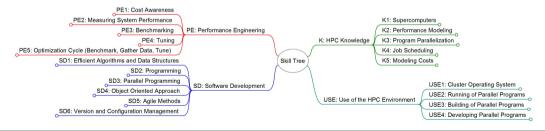
PE Performance Engineering

K HPC Knowledge

SD Software Development

USE
 Use of the HPC Environment

HPC-CF ID


■ PE2.2.2.5-B → position in the skill tree

Target Group

lacksquare B ightarrow Beginner

ightharpoonup m I
ightharpoonup Intermediate

lacksquare E \rightarrow Expert

PIKA NHR Tutorial Course Website

HPC-CF Skill Tree

Description

Skill updated in HPC-CF Skill didn't exist in HPC-CE

Skill already exist in HPC-CF

Prerequisites

- basic HPC knowledge (K-B HPC Knowledge)
- optional: PE-B Performance Engineering

Learning Objectives

- PIKA first stage of the optimization cycle (PE5-B Optimization Cycle)
- Basic understanding of resource utilization using the hardware counter & interactive use of the PIKA web interface (PE2.2.2.5-B PIKA)

PF2.2.2.5-B PIKA

Maintainer: Frank Winkler, ZIH Team @ TU Dresden

Background Analyzing application performance in HPC can be a very challenging task. It depends on both the performance analysis tools and the build system of your application.

> **Aim** Students should learn how to determine the efficiency of their HPC jobs using the PIKA web interface.

Outcomes • Able to detect pathological performance behavior

- Able to understand the resource utilization based on the application algorithm • Able to determine possible limitations by resources
- Able to find performance bottlenecks by correlating
- various performance metrics

IO NHR Lecture

Description

Skill updated in HPC-CF

Skill didn't exist in HPC-CF
 Skill already exist in HPC-CF

Maintainer: Sebastian Oeste, ZIH Team @ TU Dresden

Prerequisites

- Safe handling of the Unix command line (bash) (USE1.3-B UNIX File System Tree)
- Good to know: Architecture of computers/clusters (K1.2-B Hardware Architectures)

Learning Objectives

- Introduction to local file systems (K1.3.2.3-B File Systems)
- Best practices for parallel I/O (K1.3.2.5-B Parallel I/O)
- Working with parallel file systems (K1.3.2.5.1-B MPI-IO)
- Introduction to POSIX I/O semantic (K1.3.2.6-B POSIX)
- Overview of parallel I/O access patterns (K1.3.5-B Access Pattern)
- Introduction in I/O (PE2.3-B I/O Performance)
- (PE2.3-B I/O Performance)
- Overview of I/O performance analysis techniques (PE2.3-I I/O Performance)

TOOLS NHR Workshop

Description

Skill updated in HPC-CF

Skill didn't exist in HPC-CF

Skill already exist in HPC-CF

Course Website

Prerequisites

- compiling and running parallel applications on command line
- modifying source code on the command line

Learning Objectives

- applying a performance engineering cycle to a parallel program
- reducing overhead caused by instrumentation
- finding typical performance bottlenecks via visual analysis
- determine parallel I/O behavior

HPC-Certification Forum Links

- PE-B Performance Engineering
- PE2.2-B Profiling
- PE2.3-B I/O Performance
- PE2.2-E Profiling
- PE5-B Optimization Cycle
- PE2.2.2.1-B Score-P
- PE2.2.2.3-B Vampir

TOOLS NHR Workshop

HPC-CF Skill Tree

Maintainer: Bert Wesarg, William (Bill) Williams, ZIH Tools Team @ TUD

PE2.2.2.3-B Vampir

Background Vampir is a tool that focuses on providing quality visualization to support manual trace analysis.

Aim Students should be able to use Vampir on trace files that they have collected, and on sample trace files provided by the instructors.

Outcomes • Able to launch Vampir both stand-alone and connected to a VampirServer instance if available • Able to use the function summary to determine at a high level what parts of the code may not perform well

PE2.2.2.1-B Score-P

Background Score-P presents a generally uniform approach to collecting profiling and tracing data that can be applied to a broad range of HPC applications.

Aim Students should learn how to use Score-P to produce profiling and tracing data for their HPC applications.

Outcomes • Able to instrument applications including one or more parallel paradigms
• Able to instrument applications including at least one specialized form of

measurement

Certification of ParticipationPIKA NHR TUTORIAL

Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)

CERTIFICATE OF PARTICIPATION

Content:

- PIKA hardware performance monitoring stack (HPC-CF Skill-Tree: PE2.2.2.5-B PIKA)
- Basics of resource utilization by using a hardware counter and the interactive PIKA web interface
- Efficiency analysis by using an interactive web interface
- Job-specific monitoring on the HPC systems of ZIH
- Evaluation of the performance and the resource utilization with the help of PIKA

Certification of ParticipationTOOLS NHR WORKSHOP

Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)

CERTIFICATE OF PARTICIPATION

Content:

- Introduction to performance engineering
- Presentation of the framework Score-P for instrumentation and performance analysis (HPC-CF Skill-Tree: PE2.2.2.1-B Score-P)
- Presentation of the framework Vampir for visual performance analysis (HPC-CF Skill-Tree: PE2.2.2.3-B Vampir)
- Application of a performance engineering cycle to a parallel program
- Reduction of the overhead caused by the instrumentation
- Detecting typical performance bottlenecks with visual analysis
- Insights into the parallel I/O behavior of HPC applications
- · Determining the parallel I/O behavior

Certification of ParticipationIO NHR LECTURE

Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)

CERTIFICATE OF PARTICIPATION

Content:

- Introduction in I/O (HPC-CF Skill-Tree: PE2.3-B I/O Performance)
- Introduction to POSIX I/O semantic (HPC-CF Skill-Tree: K1.3.2.6-B POSIX)
- Introduction to local file systems (HPC-CF Skill-Tree: K1.3.2.3-B File Systems)
- Overview of Linux file system caches
- Introduction of parallel file systems (HPC-CF Skill-Tree: K1.3.2.3-B File Systems)
- Overview of parallel I/O access patterns (HPC-CF Skill-Tree: K1.3.5-B Access Pattern)
- Introduction to collective IO and optimization strategies (HPC-CF Skill-Tree: K1.3.2.5.1-B MPI-IO)
- Overview of I/O performance analysis techniques (Skill-Tree: PE2.3-I I/O Performance)
- Best practices for parallel I/O (HPC-CF Skill-Tree: K1.3.2.5-B Parallel I/O)

NHR Training 2021 @ ZIH + HPC-CF Skill Trees

NHR Training 2021 @ ZIH + HPC-CF Skill Trees

Comparison: NHR Course Website vs. HPC-CF Skill Tree Entry

NHR Training 2021 @ ZIH + HPC-CF Skill Trees

- Description
- Skill updated in HPC-CF
- Skill didn't exist in HPC-CF
- Skill already exist in HPC-CF

Comparison: NHR Course Website vs. HPC-CF Skill Tree Entry

NHR Training 2021 @ ZIH + HPC-CF Skill Trees

- Description
- Skill updated in HPC-CF
- Skill didn't exist in HPC-CF
- Skill already exist in HPC-CF

Comparison: NHR Course Website vs. HPC-CF Skill Tree Entry

CERTIFICATE OF PARTICIPATION

Certification of Participation

Mapping of Learning Outcomes into HPC-CF Skill Tree

Thank You!

Anja Gerbes

NHR-Course Coordination @ ZIH

™ anja.gerbes@tu-dresden.de

☆ +49 351 463-42272

Reach out to us

More info: https://www.hpc-certification.org/

Contact us: board@hpc-certification.org
Participate/Contribute: Join our Slack channel

NHR Training-Portfolio @ ZIH 2022

More info about the NHR Center - ZIH:

https://tu-dresden.de/zih/hochleistungsrechnen/nhr-center

Participate: Join our NHR Training @ ZIH

https://tu-dresden.de/zih/hochleistungsrechnen/nhr-training

